Useful lemmas Proofs involving the Moore–Penrose inverse




1 useful lemmas

1.1 lemma 1: a*a = 0 ⇒ = 0
1.2 lemma 2: a*ab = 0 ⇒ ab = 0
1.3 lemma 3: abb* = 0 ⇒ ab = 0





useful lemmas

these results used in proofs below. in following lemmas, matrix complex elements , n columns, b matrix complex elements , n rows.


lemma 1: a*a = 0 ⇒ = 0

the assumption says elements of a*a zero. therefore,







0
=
tr

(

a




a
)
=



j
=
1


n


(

a




a

)

j
j


=



j
=
1


n





i
=
1


m


(

a





)

j
i



a

i
j


=



i
=
1


m





j
=
1


n



|


a

i
j




|


2




{\displaystyle 0=\operatorname {tr} (a^{*}a)=\sum _{j=1}^{n}(a^{*}a)_{jj}=\sum _{j=1}^{n}\sum _{i=1}^{m}(a^{*})_{ji}a_{ij}=\sum _{i=1}^{m}\sum _{j=1}^{n}|a_{ij}|^{2}}

.

therefore,




a

i
j




{\displaystyle a_{ij}}

equal 0 i.e.



a
=
0


{\displaystyle a=0}

.


lemma 2: a*ab = 0 ⇒ ab = 0










0




=

a




a
b











0




=

b





a




a
b











0




=
(
a
b

)




(
a
b
)











0




=
a
b




(

lemma 1

)






{\displaystyle {\begin{alignedat}{3}&0\,&&=a^{*}ab&&&\\\rightarrow \,&0\,&&=b^{*}a^{*}ab&&&\\\rightarrow \,&0\,&&=(ab)^{*}(ab)&&&\\\rightarrow \,&0\,&&=ab&&&({\text{by lemma 1}})\end{alignedat}}}


lemma 3: abb* = 0 ⇒ ab = 0

this proved in manner similar argument of lemma 2 (or taking hermitian conjugate).







Comments

Popular posts from this blog

Camerini.27s algorithm for undirected graphs Minimum bottleneck spanning tree

Discography Anthony Phillips

Entertainment List of minor planets named after people