Transformation rule of the stress tensor Cauchy stress tensor



figure 2.4 transformation of stress tensor



expanding matrix operation, , simplifying terms using symmetry of stress tensor, gives








σ

11



=

a

11


2



σ

11


+

a

12


2



σ

22


+

a

13


2



σ

33


+
2

a

11



a

12



σ

12


+
2

a

11



a

13



σ

13


+
2

a

12



a

13



σ

23


,


{\displaystyle \sigma _{11} =a_{11}^{2}\sigma _{11}+a_{12}^{2}\sigma _{22}+a_{13}^{2}\sigma _{33}+2a_{11}a_{12}\sigma _{12}+2a_{11}a_{13}\sigma _{13}+2a_{12}a_{13}\sigma _{23},}







σ

22



=

a

21


2



σ

11


+

a

22


2



σ

22


+

a

23


2



σ

33


+
2

a

21



a

22



σ

12


+
2

a

21



a

23



σ

13


+
2

a

22



a

23



σ

23


,


{\displaystyle \sigma _{22} =a_{21}^{2}\sigma _{11}+a_{22}^{2}\sigma _{22}+a_{23}^{2}\sigma _{33}+2a_{21}a_{22}\sigma _{12}+2a_{21}a_{23}\sigma _{13}+2a_{22}a_{23}\sigma _{23},}







σ

33



=

a

31


2



σ

11


+

a

32


2



σ

22


+

a

33


2



σ

33


+
2

a

31



a

32



σ

12


+
2

a

31



a

33



σ

13


+
2

a

32



a

33



σ

23


,


{\displaystyle \sigma _{33} =a_{31}^{2}\sigma _{11}+a_{32}^{2}\sigma _{22}+a_{33}^{2}\sigma _{33}+2a_{31}a_{32}\sigma _{12}+2a_{31}a_{33}\sigma _{13}+2a_{32}a_{33}\sigma _{23},}











σ

12



=



a

11



a

21



σ

11


+

a

12



a

22



σ

22


+

a

13



a

23



σ

33








+
(

a

11



a

22


+

a

12



a

21


)

σ

12


+
(

a

12



a

23


+

a

13



a

22


)

σ

23


+
(

a

11



a

23


+

a

13



a

21


)

σ

13


,






{\displaystyle {\begin{aligned}\sigma _{12} =&a_{11}a_{21}\sigma _{11}+a_{12}a_{22}\sigma _{22}+a_{13}a_{23}\sigma _{33}\\&+(a_{11}a_{22}+a_{12}a_{21})\sigma _{12}+(a_{12}a_{23}+a_{13}a_{22})\sigma _{23}+(a_{11}a_{23}+a_{13}a_{21})\sigma _{13},\end{aligned}}}











σ

23



=



a

21



a

31



σ

11


+

a

22



a

32



σ

22


+

a

23



a

33



σ

33








+
(

a

21



a

32


+

a

22



a

31


)

σ

12


+
(

a

22



a

33


+

a

23



a

32


)

σ

23


+
(

a

21



a

33


+

a

23



a

31


)

σ

13


,






{\displaystyle {\begin{aligned}\sigma _{23} =&a_{21}a_{31}\sigma _{11}+a_{22}a_{32}\sigma _{22}+a_{23}a_{33}\sigma _{33}\\&+(a_{21}a_{32}+a_{22}a_{31})\sigma _{12}+(a_{22}a_{33}+a_{23}a_{32})\sigma _{23}+(a_{21}a_{33}+a_{23}a_{31})\sigma _{13},\end{aligned}}}











σ

13



=



a

11



a

31



σ

11


+

a

12



a

32



σ

22


+

a

13



a

33



σ

33








+
(

a

11



a

32


+

a

12



a

31


)

σ

12


+
(

a

12



a

33


+

a

13



a

32


)

σ

23


+
(

a

11



a

33


+

a

13



a

31


)

σ

13


.






{\displaystyle {\begin{aligned}\sigma _{13} =&a_{11}a_{31}\sigma _{11}+a_{12}a_{32}\sigma _{22}+a_{13}a_{33}\sigma _{33}\\&+(a_{11}a_{32}+a_{12}a_{31})\sigma _{12}+(a_{12}a_{33}+a_{13}a_{32})\sigma _{23}+(a_{11}a_{33}+a_{13}a_{31})\sigma _{13}.\end{aligned}}}



the mohr circle stress graphical representation of transformation of stresses.







Comments

Popular posts from this blog

Camerini.27s algorithm for undirected graphs Minimum bottleneck spanning tree

Discography Anthony Phillips

Entertainment List of minor planets named after people