Derivation of RANS equations Reynolds-averaged Navier–Stokes equations






^ tennekes, h.; lumley, j. l. (1992). first course in turbulence (14. print. ed.). cambridge, mass. [u.a.]: mit press. isbn 978-0-262-20019-6. 
^ splitting each instantaneous quantity averaged , fluctuating components yields,











(




u

i


¯



+

u

i





)





x

i





=
0


{\displaystyle {\frac {\partial \left({\bar {u_{i}}}+u_{i}^{\prime }\right)}{\partial x_{i}}}=0}













(




u

i


¯



+

u

i





)




t



+

(




u

j


¯



+

u

j





)






(




u

i


¯



+

u

i





)





x

j





=

(




f

i


¯



+

f

i





)




1
ρ







(



p
¯



+

p




)





x

i





+
ν






2



(




u

i


¯



+

u

i





)





x

j




x

j





.


{\displaystyle {\frac {\partial \left({\bar {u_{i}}}+u_{i}^{\prime }\right)}{\partial t}}+\left({\bar {u_{j}}}+u_{j}^{\prime }\right){\frac {\partial \left({\bar {u_{i}}}+u_{i}^{\prime }\right)}{\partial x_{j}}}=\left({\bar {f_{i}}}+f_{i}^{\prime }\right)-{\frac {1}{\rho }}{\frac {\partial \left({\bar {p}}+p^{\prime }\right)}{\partial x_{i}}}+\nu {\frac {\partial ^{2}\left({\bar {u_{i}}}+u_{i}^{\prime }\right)}{\partial x_{j}\partial x_{j}}}.}



time-averaging these equations yields,













(




u

i


¯



+

u

i





)





x

i




¯


=
0


{\displaystyle {\overline {\frac {\partial \left({\bar {u_{i}}}+u_{i}^{\prime }\right)}{\partial x_{i}}}}=0}












(




u

i


¯



+

u

i





)




t


¯


+




(




u

j


¯



+

u

j





)






(




u

i


¯



+

u

i





)





x

j






¯


=



(




f

i


¯



+

f

i





)

¯





1
ρ








(



p
¯



+

p




)





x

i




¯


+
ν







2



(




u

i


¯



+

u

i





)





x

j




x

j




¯


.


{\displaystyle {\overline {\frac {\partial \left({\bar {u_{i}}}+u_{i}^{\prime }\right)}{\partial t}}}+{\overline {\left({\bar {u_{j}}}+u_{j}^{\prime }\right){\frac {\partial \left({\bar {u_{i}}}+u_{i}^{\prime }\right)}{\partial x_{j}}}}}={\overline {\left({\bar {f_{i}}}+f_{i}^{\prime }\right)}}-{\frac {1}{\rho }}{\overline {\frac {\partial \left({\bar {p}}+p^{\prime }\right)}{\partial x_{i}}}}+\nu {\overline {\frac {\partial ^{2}\left({\bar {u_{i}}}+u_{i}^{\prime }\right)}{\partial x_{j}\partial x_{j}}}}.}



note nonlinear terms (like







u

i



u

i



¯




{\displaystyle {\overline {u_{i}u_{i}}}}

) can simplified to,







u

i



u

i



¯


=




(




u

i


¯



+

u

i





)


(




u

i


¯



+

u

i





)


¯


=







u

i


¯







u

i


¯



+




u

i


¯




u

i





+

u

i









u

i


¯



+

u

i






u

i






¯


=




u

i


¯







u

i


¯



+




u

i






u

i






¯




{\displaystyle {\overline {u_{i}u_{i}}}={\overline {\left({\bar {u_{i}}}+u_{i}^{\prime }\right)\left({\bar {u_{i}}}+u_{i}^{\prime }\right)}}={\overline {{\bar {u_{i}}}{\bar {u_{i}}}+{\bar {u_{i}}}u_{i}^{\prime }+u_{i}^{\prime }{\bar {u_{i}}}+u_{i}^{\prime }u_{i}^{\prime }}}={\bar {u_{i}}}{\bar {u_{i}}}+{\overline {u_{i}^{\prime }u_{i}^{\prime }}}}



^ follows mass conservation equation gives,











u

i






x

i





=








u

i


¯







x

i





+





u

i









x

i





=
0


{\displaystyle {\frac {\partial u_{i}}{\partial x_{i}}}={\frac {\partial {\bar {u_{i}}}}{\partial x_{i}}}+{\frac {\partial u_{i}^{\prime }}{\partial x_{i}}}=0}








Comments

Popular posts from this blog

Camerini.27s algorithm for undirected graphs Minimum bottleneck spanning tree

Discography Anthony Phillips

Roads and bridges List of places named for Douglas MacArthur