Products Proofs involving the Moore–Penrose inverse




1 products

1.1 has orthonormal columns
1.2 b has orthonormal rows
1.3 has full column rank , b has full row rank
1.4 conjugate transpose





products

for first 3 proofs, consider products c = ab.


a has orthonormal columns

if



a


{\displaystyle a}

has orthonormal columns i.e.




a




a
=
i


{\displaystyle a^{*}a=i}






a

+


=

a






{\displaystyle a^{+}=a^{*}}

. write



d
=

b

+



a

+


=

b

+



a






{\displaystyle d=b^{+}a^{+}=b^{+}a^{*}}

. show



d


{\displaystyle d}

satisfies moore-penrose criteria.






c
d
c
=
a
b

b

+



a




a
b
=
a
b

b

+


b
=
a
b
=
c


{\displaystyle cdc=abb^{+}a^{*}ab=abb^{+}b=ab=c}

,






d
c
d
=

b

+



a




a
b

b

+



a




=

b

+


b

b

+



a




=

b

+



a




=
d


{\displaystyle dcd=b^{+}a^{*}abb^{+}a^{*}=b^{+}bb^{+}a^{*}=b^{+}a^{*}=d}

,






(
c
d

)




=

d





b





a




=
a
(

b

+



)





b





a




=
a
(
b

b

+



)





a




=
a
b

b

+



a




=
c
d


{\displaystyle (cd)^{*}=d^{*}b^{*}a^{*}=a(b^{+})^{*}b^{*}a^{*}=a(bb^{+})^{*}a^{*}=abb^{+}a^{*}=cd}

,






(
d
c

)




=

b





a





d




=

b





a




a
(

b

+



)




=
(

b

+


b

)




=

b

+


b
=

b

+



a




a
b
=
d
c


{\displaystyle (dc)^{*}=b^{*}a^{*}d^{*}=b^{*}a^{*}a(b^{+})^{*}=(b^{+}b)^{*}=b^{+}b=b^{+}a^{*}ab=dc}

.


therefore



d
=

c

+




{\displaystyle d=c^{+}}

.


b has orthonormal rows

if b has orthonormal rows i.e.



b

b




=
i


{\displaystyle bb^{*}=i}






b

+


=

b






{\displaystyle b^{+}=b^{*}}

. write



d
=

b

+



a

+


=

b





a

+




{\displaystyle d=b^{+}a^{+}=b^{*}a^{+}}

. show



d


{\displaystyle d}

satisfies moore-penrose criteria.






c
d
c
=
a
b

b





a

+


a
b
=
a

a

+


a
b
=
a
b
=
c


{\displaystyle cdc=abb^{*}a^{+}ab=aa^{+}ab=ab=c}

,






d
c
d
=

b





a

+


a
b

b





a

+


=

b





a

+


a

a

+


=

b





a

+


=
d


{\displaystyle dcd=b^{*}a^{+}abb^{*}a^{+}=b^{*}a^{+}aa^{+}=b^{*}a^{+}=d}

,






(
c
d

)




=

d





b





a




=
(

a

+



)




b

b





a




=
(

a

+



)





a




=
(
a

a

+



)




=
a

a

+


=
a
b

b





a

+


=
c
d


{\displaystyle (cd)^{*}=d^{*}b^{*}a^{*}=(a^{+})^{*}bb^{*}a^{*}=(a^{+})^{*}a^{*}=(aa^{+})^{*}=aa^{+}=abb^{*}a^{+}=cd}

,






(
d
c

)




=

b





a





d




=

b





a




(

a

+



)




b
=

b




(

a

+


a

)




b
=

b





a

+


a
b
=
d
c


{\displaystyle (dc)^{*}=b^{*}a^{*}d^{*}=b^{*}a^{*}(a^{+})^{*}b=b^{*}(a^{+}a)^{*}b=b^{*}a^{+}ab=dc}

.


therefore



d
=

c

+


.


{\displaystyle d=c^{+}.}


a has full column rank , b has full row rank

since



a


{\displaystyle a}

has full column rank,




a




a


{\displaystyle a^{*}a}

invertible



(

a




a

)

+


=
(

a




a

)


1




{\displaystyle (a^{*}a)^{+}=(a^{*}a)^{-1}}

. similarly, since



a


{\displaystyle a}

b has full row rank,



b

b






{\displaystyle bb^{*}}

invertible



(
b

b





)

+


=
(
b

b





)


1




{\displaystyle (bb^{*})^{+}=(bb^{*})^{-1}}

.


write



d
=

b

+



a

+


=

b




(
b

b





)


1


(

a




a

)


1



a






{\displaystyle d=b^{+}a^{+}=b^{*}(bb^{*})^{-1}(a^{*}a)^{-1}a^{*}}

. show



d


{\displaystyle d}

satisfies moore-penrose criteria.






c
d
c
=
a
b

b




(
b

b





)


1


(

a




a

)


1



a




a
b
=
a
b
=
c


{\displaystyle cdc=abb^{*}(bb^{*})^{-1}(a^{*}a)^{-1}a^{*}ab=ab=c}

,






d
c
d
=

b




(
b

b





)


1


(

a




a

)


1



a




a
b

b




(
b

b





)


1


(

a




a

)


1



a




=

b




(
b

b





)


1


(

a




a

)


1



a




=
d


{\displaystyle dcd=b^{*}(bb^{*})^{-1}(a^{*}a)^{-1}a^{*}abb^{*}(bb^{*})^{-1}(a^{*}a)^{-1}a^{*}=b^{*}(bb^{*})^{-1}(a^{*}a)^{-1}a^{*}=d}

,






c
d
=
a
b

b




(
b

b





)


1


(

a




a

)


1



a




=
a
(

a




a

)


1



a




=
(
a
(

a




a

)


1



a





)





(
c
d

)




=
c
d


{\displaystyle cd=abb^{*}(bb^{*})^{-1}(a^{*}a)^{-1}a^{*}=a(a^{*}a)^{-1}a^{*}=(a(a^{*}a)^{-1}a^{*})^{*}\rightarrow (cd)^{*}=cd}

,






d
c
=

b




(
b

b





)


1


(

a




a

)


1



a




a
b
=

b




(
b

b





)


1


b
=
(

b




(
b

b





)


1


b

)





(
d
c

)




=
d
c


{\displaystyle dc=b^{*}(bb^{*})^{-1}(a^{*}a)^{-1}a^{*}ab=b^{*}(bb^{*})^{-1}b=(b^{*}(bb^{*})^{-1}b)^{*}\rightarrow (dc)^{*}=dc}

.


therefore



d
=

c

+




{\displaystyle d=c^{+}}

.


conjugate transpose

here,



b
=

a






{\displaystyle b=a^{*}}

, ,



c
=
a

a






{\displaystyle c=aa^{*}}

,



d
=

a

+




a

+




{\displaystyle d=a^{+*}a^{+}}

. show indeed



d


{\displaystyle d}

satisfies 4 moore-penrose criteria.









c
d
c
=
a

a





a

+




a

+


a

a




=
a
(

a

+


a

)





a

+


a

a




=
a

a

+


a

a

+


a

a




=
a

a

+


a

a




=
a

a




=
c


{\displaystyle cdc=aa^{*}a^{+*}a^{+}aa^{*}=a(a^{+}a)^{*}a^{+}aa^{*}=aa^{+}aa^{+}aa^{*}=aa^{+}aa^{*}=aa^{*}=c}






d
c
d
=

a

+




a

+


a

a





a

+




a

+


=

a

+




a

+


a
(

a

+


a

)





a

+


=

a

+




a

+


a

a

+


a

a

+


=

a

+




a

+


a

a

+


=

a

+




a

+


a

a

+


=

a

+




a

+


=
d


{\displaystyle dcd=a^{+*}a^{+}aa^{*}a^{+*}a^{+}=a^{+*}a^{+}a(a^{+}a)^{*}a^{+}=a^{+*}a^{+}aa^{+}aa^{+}=a^{+*}a^{+}aa^{+}=a^{+*}a^{+}aa^{+}=a^{+*}a^{+}=d}






(
c
d

)




=
(
a

a





a

+




a

+



)




=

a

+




a

+


a

a




=

a

+



(

a

+


a

)





a




=

a

+




a





a

+




a




=
(
a

a

+



)




(
a

a

+



)




=
a

a

+


a

a

+


=
a
(

a

+


a

)





a

+


=


{\displaystyle (cd)^{*}=(aa^{*}a^{+*}a^{+})^{*}=a^{+*}a^{+}aa^{*}=a^{+*}(a^{+}a)^{*}a^{*}=a^{+*}a^{*}a^{+*}a^{*}=(aa^{+})^{*}(aa^{+})^{*}=aa^{+}aa^{+}=a(a^{+}a)^{*}a^{+}=}









=
a

a





a

+




a

+


=
c
d


{\displaystyle =aa^{*}a^{+*}a^{+}=cd}










(
d
c

)




=
(

a

+




a

+


a

a





)




=
a

a





a

+




a

+


=
a
(

a

+


a

)





a

+


=
a

a

+


a

a

+


=
(
a

a

+



)




(
a

a

+



)




=

a

+




a





a

+




a




=

a

+



(

a

+


a

)





a




=


{\displaystyle (dc)^{*}=(a^{+*}a^{+}aa^{*})^{*}=aa^{*}a^{+*}a^{+}=a(a^{+}a)^{*}a^{+}=aa^{+}aa^{+}=(aa^{+})^{*}(aa^{+})^{*}=a^{+*}a^{*}a^{+*}a^{*}=a^{+*}(a^{+}a)^{*}a^{*}=}









=

a

+




a

+


a

a




=
d
c


{\displaystyle =a^{+*}a^{+}aa^{*}=dc}









therefore



d
=

c

+




{\displaystyle d=c^{+}}

. in other words:









(
a

a





)

+


=

a

+




a

+




{\displaystyle (aa^{*})^{+}=a^{+*}a^{+}}





and, since



(

a





)




=
a


{\displaystyle (a^{*})^{*}=a}









(

a




a

)

+


=

a

+



a

+





{\displaystyle (a^{*}a)^{+}=a^{+}a^{+*}}










Comments

Popular posts from this blog

Camerini.27s algorithm for undirected graphs Minimum bottleneck spanning tree

Discography Anthony Phillips

Roads and bridges List of places named for Douglas MacArthur