Octahedral stresses Cauchy stress tensor



figure 6. octahedral stress planes


considering principal directions coordinate axes, plane normal vector makes equal angles each of principal axes (i.e. having direction cosines equal




|

1

/



3



|



{\displaystyle |1/{\sqrt {3}}|}

) called octahedral plane. there total of 8 octahedral planes (figure 6). normal , shear components of stress tensor on these planes called octahedral normal stress




σ


o
c
t





{\displaystyle \sigma _{\mathrm {oct} }}

, octahedral shear stress




τ


o
c
t





{\displaystyle \tau _{\mathrm {oct} }}

, respectively. octahedral plane passing through origin known π-plane (π not confused mean stress denoted π in above section) . on π-plane,




s

i
j


=
i

/

3


{\displaystyle s_{ij}=i/3}

.


knowing stress tensor of point o (figure 6) in principal axes is








σ

i
j


=


[




σ

1




0


0




0



σ

2




0




0


0



σ

3





]




{\displaystyle \sigma _{ij}={\begin{bmatrix}\sigma _{1}&0&0\\0&\sigma _{2}&0\\0&0&\sigma _{3}\end{bmatrix}}}



the stress vector on octahedral plane given by:













t



o
c
t



(

n

)





=

σ

i
j



n

i




e


j








=

σ

1



n

1




e


1


+

σ

2



n

2




e


2


+

σ

3



n

3




e


3








=



1

3




(

σ

1




e


1


+

σ

2




e


2


+

σ

3




e


3


)






{\displaystyle {\begin{aligned}\mathbf {t} _{\mathrm {oct} }^{(\mathbf {n} )}&=\sigma _{ij}n_{i}\mathbf {e} _{j}\\&=\sigma _{1}n_{1}\mathbf {e} _{1}+\sigma _{2}n_{2}\mathbf {e} _{2}+\sigma _{3}n_{3}\mathbf {e} _{3}\\&={\tfrac {1}{\sqrt {3}}}(\sigma _{1}\mathbf {e} _{1}+\sigma _{2}\mathbf {e} _{2}+\sigma _{3}\mathbf {e} _{3})\end{aligned}}}



the normal component of stress vector @ point o associated octahedral plane is












σ


o
c
t






=

t

i


(
n
)



n

i








=

σ

i
j



n

i



n

j








=

σ

1



n

1



n

1


+

σ

2



n

2



n

2


+

σ

3



n

3



n

3








=



1
3



(

σ

1


+

σ

2


+

σ

3


)
=



1
3




i

1








{\displaystyle {\begin{aligned}\sigma _{\mathrm {oct} }&=t_{i}^{(n)}n_{i}\\&=\sigma _{ij}n_{i}n_{j}\\&=\sigma _{1}n_{1}n_{1}+\sigma _{2}n_{2}n_{2}+\sigma _{3}n_{3}n_{3}\\&={\tfrac {1}{3}}(\sigma _{1}+\sigma _{2}+\sigma _{3})={\tfrac {1}{3}}i_{1}\end{aligned}}}



which mean normal stress or hydrostatic stress. value same in 8 octahedral planes. shear stress on octahedral plane then












τ


o
c
t






=



t

i


(
n
)



t

i


(
n
)




σ


n



2










=


[



1
3



(

σ

1


2


+

σ

2


2


+

σ

3


2


)




1
9



(

σ

1


+

σ

2


+

σ

3



)

2


]


1

/

2








=



1
3





[
(

σ

1




σ

2



)

2


+
(

σ

2




σ

3



)

2


+
(

σ

3




σ

1



)

2


]


1

/

2


=



1
3





2

i

1


2



6

i

2




=





2
3




j

2










{\displaystyle {\begin{aligned}\tau _{\mathrm {oct} }&={\sqrt {t_{i}^{(n)}t_{i}^{(n)}-\sigma _{\mathrm {n} }^{2}}}\\&=\left[{\tfrac {1}{3}}(\sigma _{1}^{2}+\sigma _{2}^{2}+\sigma _{3}^{2})-{\tfrac {1}{9}}(\sigma _{1}+\sigma _{2}+\sigma _{3})^{2}\right]^{1/2}\\&={\tfrac {1}{3}}\left[(\sigma _{1}-\sigma _{2})^{2}+(\sigma _{2}-\sigma _{3})^{2}+(\sigma _{3}-\sigma _{1})^{2}\right]^{1/2}={\tfrac {1}{3}}{\sqrt {2i_{1}^{2}-6i_{2}}}={\sqrt {{\tfrac {2}{3}}j_{2}}}\end{aligned}}}








Comments

Popular posts from this blog

Camerini.27s algorithm for undirected graphs Minimum bottleneck spanning tree

Discography Anthony Phillips

Roads and bridges List of places named for Douglas MacArthur